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TWO-SIDED ESTIMATES ON THE ATTAINABILITY DOMAINS OF CONTROLLED SYSTEMS* 

A.I. OVSEEVICH and F.L. CHEHNOUS'KO 

The differential equations describing the evolution of outer and inner ellipsoidal 
approximations to the attainability domains of controlled systems are studied. 
Estimates ofthevolumesare obtained and certain extremal properties of these ellip- 
soids are formulated. 

Knowledge of attainability domains is required not just in control problems. It is es- 

sential also when estimating the influence of perturbations on dynamic systems under a estima- 
tion (filtration) of the dynamic systems inthepresenceof measurement errors /l-33/, as well 
as in differential games /4/. However, the effective construction of attainability domains 
is very difficult. An explicit description is available only in the simplest cases, while a 
numerical construction /5,6/ entails the need for approximating the domain's boundary in a 
multidimensional space. In a number of cases /7/ the evolution of the attainability domain 
is described by an ordinary differential equation in an infinite-dimensional space. It is 

natural to try to find a reasonable finite-dimensional approximation of this complex dynamic 
system. Ordinary differential equations were obtained in /a-10/, describing the evolution 

of outer and inner ellipsoidal approximations to the attainability domains. 

1. Evolution of attainability domains. Consider a controlled dynamic system of 
general form 

5' = f (5, u, 0, u E D (t), .r (s) 6~ D (s) (1.1) 

Here t is time, zE R" is the phase vector, U(t) are prescribed sets of values of control U, 

D(s) is the domain in which the phase vector lies at the initial instant s (the initial do- 

main). The set of endpoints z(t) of the trajectories starting off in D(S)and satisfying (1.1 

for some admissible control u(t)is called the attainability domain D(t) = D(s, t) of system 

(1.1) at the instant t. In order to emphasize the dependence of the attainability domain on 

the initial set D and on the initial instant s we write D(t) =D(t, s, D(S)). The attain- 

ability domain is an important characteristic of a controlled system, permitting the evalua- 

tion of control capability, as well as essentially simplifying the solving of optimization 

problems. Thus, the problem of minimizing a terminal functional F(z(2’)). where T is a fixed 

instant and F(~)iis a prescribed function, is equivalent to seeking the minimum of P(z)on the 

attainability domain D(T). 
Let us consider a controlled system (1.1) in which 

f (5, u, t) = A (t) J + g(5. u, 1) (1.2) 

where A (t) is an n x n-matrix, while the set 

G(J, t) = {y et R"; y = g(x, u, t), 11 e u(t)} 

of values of g(z, U, t) as a function of u admits of the two-sided estimate G_ (t) c G (I. t) c 

G, (t)> , where G*(t) are closed convex sets. Let an analogous estimate D_ (4 c D (4 c D, (4 
on the initial domain exist as well. Then, obviously, the attainability domains D+(t)of the 

linear controlled systems 

.I' = A (t) z + u_, I(S) E D_ (s). u_ E G_ (t) 
z’ = A (t) z + u+, z (s) E D, (9. u, E G, (t) 

yield the two-sided estimate D_(t) c D (t) c D, (t) for the required attainability domains of 

system (1.1). Consequently, the problem of estimating the attainability domains for system 

(1.11, (1.2) is to a significant extent reduced to the analogous problem for the linear system 
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z- = A (t) z + u, .z (4 E D (s), u E u ff) (1.3) 

where D(s) and U(t) are prescribed closed convex sets in R". This problem is precisely the 

one to be studied below. We describe the evolution of the attainability domains D(t) of 

system (1.3) with the aid of an ordinary differential equation in an infinite-dimensional space. 
For this we note that Lt = D(t) is a closed convex set, and such sets are uniquely specified 

by their support function /11/ 

H(E) = H,(f) =;zEP*%) 

where %&R" and (,) is the scalar product. The following theorem describes the evolution 

of the support functions of the attainability domains of system (1.3). 

Theorem 1. Let H(t, E)== Ho,f~(E) be the support function of the attainability domain 
D(t) of system (1.3) and h.(t, E)= H~,t,(t) be the support function of the control domain u(t). 
Then 

11.4) 

where a/a% denotes the gradient with respect to E. 
The proof of Theorem 1 is obtained by a differentiation of the support function, and is 

omitted here. 

Notes. lo. An equation of type (1.4) was obtained in /7/ under somewhat different as- 
sumptions. 

2O. In general, the gradient afflak does not exist at all points. However, the definition 
of the expression (aH/aE(k),Q, if it is understood as a directional derivative along 7j (i.e., 
iime-f (H (E + E$ - H (E)f as 8 1 O), is everywhere well-posed for any convex function H(5) /U. 
The term k-i faHta~,5)=(aHlaE,A8g in Eq.fl.4) should be understood in precisely this sense 
(matrix A* is the transpose of A). 

Definition. Let a(t) be a family of closed convex sets depending on a parameter t > s, 
@(t, %) = Hnctr(%) be the corresponding family of support functions. We say that n(t) is family 
of subattainability domains (respectively, superattainability domains) for system (1.3) if the 
differential inequality 

(1.5) 

(respectively, the inequality (1.5) with sign >) is fulfilled. 
We note that the inclusion QIcQ, of closed convex sets corresponds precisely to the 

inequality H,,li!bH,,(t) for their support functions. Therefore, from Theorem 1 it follows 
that Q(~)cD(I) in the case of subattainability domains and C(l); O(t) in the caseofsuperattain- 
ability domains. Further, if rdt and D(z,t) is the attainability domain at instant t of the 
controlled system 

x' = A (f) z + u, z (7) E P (if. u E U(f) (1.61 

then D(T,~) contains the subattainability domain B(f) (respectively, is containedinthe super- 
attainability domain Q (0) . As a matter of fact the condition of subattainabilityof family 
G(t) is equivalent to the conditions Q (s) = D(s) and D(t. T, Q(T))DQ (0 for any t < t. In such 

a form the subattainability condition is suitable also for nonlinear controlled systems. The 
substitution of the inclusion in the second condition to inverse leads to the superattain- 
ability condition. 

The problem on the approximation of the attainability domains of the form prescribed can 
now be stated exactly. The volume of set D is denoted v(Q). 

Definition. Let Mbe some class of convex sets. 
subattainability frespectively, 

We say that the family Q(tfE M of 
superattainability) domains locally best approximates the 

family of attainability domains D (t) of system (1.3) if at any instant T the derivative of 
the volume 

dldt I’ (Q (t)) It=% 

reaches the maximum ~minim~) among all families of subattainability (superattainability) do- 
mains from Nfor the system (1.6). 

We are required to construct effectively the locally best family of sub- and superattain- 
ability domains of class M. This problem is solved in Sect.2 for the case when Mis 
class of all ellipsoids. 

the 
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2. Ellipsoidal approximation. We introduce the notation s(a, G) for th*; eiiipScil,-i 
(Q is a positive-definite symmetric matrix) 

{cz E R". (Q-‘(z -a), z-u) < I}, a .z I{” 

We assume that at the initial instant s =I, the initial domain D(0) of controlled 
(1.3) is the ellipsoid E(a,, Q,) 

system 
and that the control domain P(f) is the ellipsoid E (b (4, 

G(t)). Then the evolution of the ellipsoids locally best approximating the attainabil.ity do- 
mains of the system 

5' = A (4 m + ~3 z (0) E E (a,, 93, u e E (b (t), G (t)) (2.11 

is descirbed by differential equations presented in Theorem 2 (given here without proof). 

Theorem 2. For the family of ellipsoids E(ar(t), QF(~)) to be the locally best family 
of subattainability (superattainability) ellipsoids for system (2.1), it is necessary and 

sufficient that the vector UT(~) and the matrix f&(t) be the solution of the following Cauchy 
problem: 

in the subattainability case 

a_' = A (t) a_ + b (t), a_ (0) = ao 
Q_' = A (t) Q_ + Q-A (t)* i_ “R-l (RQ_R*)“* (RG (t) R*)‘/* R*-’ 

Q_ (0) = Qo 

(2.2) 

where R is a nondegenerated matrix such that RQ_R* and RG(t) R* are diagonal matrices: 
in the superattainability case 

a+ ‘=A(t)a++b(t), u+(O)=a, (2.3) 
Q+‘= A (t) Q++ QtA (t)* + hQ, $ h-‘G it), Q, (0) = Qo 
h = [n-l Tr ((?;'G (t))]'!' 

Obviously, a_ (t) I a, (t). 

3O. 

Below we denote a_(t) = a+(t)= a (t). 

It is well known (see /12/, for example) that if A and E are symmetric matrices one 

of which is positive definite, then a nondegenerated matrix R exists such that RAR+ and RBR’ 

are diagonal. In spite of the possible ambiguity in the choice offitheexpression R-i(RAEI*$“x 

(RBR*)‘I*R’-~ depends only on A and I3 and equals A’/’ (A-“* BA”l’)‘l’ Ali2 if matrix A 1s positive de- 

finite. 
4O. 

Therefore, the right-hand side of j2.2) is correctly defined. 
Equations (2.2) and (2.3) were obtained earlier-b /8-lO/ from other considera- 

tions. Theorem 2 establishes the extremal properties of the ellipsoids described by these 

equations. 

3. Evolution of the volumes of the inner and outer ellipsoids. From Theorem 
2 we can obtain formulas for the derivative of the volumes of the ellipsoids locally best 

approximating from above and from below the attainability domain of system (2.1). 

Lermna (/12/, Chapter XV). Let A(t) be a family of invertible matrices depending smooth- 

ly on t. Then 

dldt in det A (t) = Tr (A (t)-‘A’ (t)) 

Corollary. Let E(a(t), Q(t)) be a family of ellipsoids 

-$v (t)= -+I' (t)Tr (Q(t)-' Q’(t)) 

(3.1) 

and v(t) be its volume. Then 

(3.2) 

Indeed, V (t) = co, [det Q (t)l”*, where o, is the volume of the unit ball E(0, Z) (I is the unit 

matrix). Therefore, (3.2) follows from (3.1). The result of Sect.3 is as follows. 

Corollary from Theorem 2. Let E(a(t), QF(t)) be a locally optimal family of ellipsoids 

of subattainability (index minus) or superattainability (index plus) for system (2.1) and let 

V,(t) be the volume of these ellipsoids. Then, respectively, (0-O and Go are diagonalmatrices) 

dldt In V_ (t) = Tr A (t) + Tr [(o_O)-"X (Go)*'*] (3.3) 

Q_” = RQ_R*, G” = RG (t) R* 

didt In V, (t) = Tr A (t) + h Tr (Q, (t)-‘G (t))P (3.4) 

Proof. We multiply the right-hand side of Eq. (2.2) by Q--r and we compute 

Tr Q_-'(I_' = 2 [Tr A + Tr (Q_-‘R-l (Q_o)‘/g (G“)‘ItR*-*)I = 2 (Tr A + Tr [(Q_o)-‘/* (G”)‘/zl} 

Hence, with due regard to formula (3.2), we obtain (3.3). Analogously, in the case of system 

(2.3) we have 
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Tr Q+-‘Q,’ = Tr [2A + hl + h-IQ+-‘GI = 2 {Tr + InTr (Q+-'G)I"~} 

From this and from (3.2) we obtain (3.4). 

4. Comparison of the volumes of the inner and outer ellipsoids. The next 

theorem gives a comparative estimate of the volumes V, and V-of the approximating ellipsoids. 

Theorem 3. In the above-adopted notation we have (V ,, is the volume of domain D (0)) 

(4.1) 

Proof. The first inequality in (4.1) is trivial since the inner ellipsoid is contained 

in the outer. To prove the second we rewrite (3.3) and (3.4) as 

$ln [V_(+?xp(- \ Tr A (T) dt.)] = Tr (Q-” (t)-“2 Go (I)‘;.) 

0 

-$In [V+(WP(-i Tr A (r) dr)] = [II ‘Tr (Q+(t)-iG (t))J”: 

0 

(4.2) 

(4.3) 

and establish the inequality 

Tr [(Q_“)-‘~~ (G”)‘b] > Tr (Q;%) (4.4) 

connecting the right-hand sides of (4.2) and (4.3). To prove relation (4.4) we note that Q_" 

and GO, and, consequently, also (Q-O)-"'. (GO)"' are diagonal matrices with positive diagonal ele- 

ments. If Ct=(CQj) is any such matrix, then 

Therefore, 

(Tr [(Q_")-"'(Cq'/'])z > Tr ([(Q-a)-"'(co)'~‘~') = Tr [(Q_“-'C"] 

since Q_" and Go are diagonal. From formulas (3.3) for these matrices follows (Q-0)-'GO = 

R*-lQ_GR*, and, therefore, Tr (Q-o)-'Co = Tr Q_-'G. Thus, (Tr (Q-O)-'/'(Ga)'/*)p > TrQ_+G , and to prove 

(4.4) it is enough to establish that 

TrQ:'C>TrQ;'G (4.5) 

Since the inner ellipsoid is contained in the outer and shares a common center n then B= 
Q_-l_Q+-' is a nonnegative-definite symmetric matrix: (fb. z)>O, AZ E Xl". Matrix G is positive 

definite. Therefore, inequality (4.5) follows from the fact that 

Tr PC = Tryy* = 5 $j>,O, y = ~'/'C'/z 
i, j=l 

From (4.2)- (4.4) we obtain 

&ln[V+(t)exp(-\TrA(2)d~)]< ,i’*~Irr[V_(t)exp(--jTril(i)d~)! 

” 0 

whence follows the second inequality in (4.1). 
The proved Theorem 3 enables us to estimate from both sides one of the volumes V+ or I/_ 

of the ellipsoids if we know the other(V_or V,). Therefore, to obtain a two-sided estimate 
on the volume of the attainability domain D(t) it is sufficient to integrate only one of the 

systems (2.2) or (2.3). It is interesting to compare inequality (4.1) with the following 
result UJ of John. 

Theorem /13/. Let n be acentro-symmetric convex body centered at the origin. Then 
an ellipsoid ECP exists such that the ellipsoid E* = fi E= (I E R'<. 
sz. 

I= V'Fv, y ES) contains 

5. Lower estimate on the inner ellipsoid's volume. Using formula (4.2) we 
obtain a lower estimate on the volume of fhe locally optimal subattainability of ellipsoid. 

Theorem 4. In the above-adopted notation the inequality 

V_ (t)‘ln > exp (+ S Tr A (T) dT) [V’,!” + 

0 
i VG (e)l’” exp (- t [ Tr A (0) do) dr] 

0 0 
(5.1) 
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is fulfilled, where Vc(r) is the volume of the ellipsoid E(b(z), G(z)) of admissible controi:; 

(see (2.1) ). 

Proof. Let us estimate from below the right-hand side of formula (4.2); to be precise, 
let us show that 

Tr (Q_")"z(Go)"~ > nVtj"YI"" !5.2 

Indeed, if a is a nonnegative-definite symmetric matrix and Al, ., A,, are its eigenvalues, 
then 

(l/n)Tra=(l/n)r,h,>(h,.. .h,)'~'"=(deta)i/~ 

1 

From this inequality for a = (Q_")-'I*(Go)'/z and from the definition of 0-0 and Go in (3.3) fol- 
lows 

Tr (Q_")-"'(GO)"' > n(det~(Q_")-*G0j)'~3"' = n [det (QI%)]"'""' 

Hence follows (5.2). Substituting (5.2) into (4.2) and integrating from 0 to 1, we obtain 
the assertion of Theorem 4. 

Corollary. When A ~0 we have the inequality 

for the volume V(t) of the attainability domain D (t) . 
To prove this it is enough to apply inequality (5.1) and to note that v(r) > V_(t). This 

corollary can be obtained independently from the Brunn-Minkowski inequality 

I' @1-j- n,,"" > I' (nl)"n + I' (9,)1/n 

where ~,+n, = (Z c Rn, I = z,++, zicPi}is the Minkowski sum of convex sets 52, and n, /14/. 

6. Upper estimate on the outer ellipsoid's volume. We now obtain an upper 
estimate for the superattainability ellipsoid's volume. In contrast to the estimateinTheorem 
4, in the estimate in Theorem 5 we now have, besides the matrices A(t) and G(t), also the 
derivative of the latter. 

Theorem 5. Let r(t) = G(t)'/g. Then in the adopted notation the inequality 

(6.1) 

c (t) = 11 r (t)-‘r’ (t) - r (t)-‘A (t) r (t) 11 

is fulfilled, where IIaII = [Tr(acc*)]'i: is the Hilbert-Schmidt norm of matrix a. 

Proof. We esimate the right-hand side of formula (4.3). We set P = rQ+-'r. Then TrP = 

TrQ+-+Z = TrQ+-'G and it all reduces to estimating TrP. Substituting Q, = rP-'r into differ- 

ential Eq.(2.3), for P we obtain the equation 

- p-'p'i'-' 1. (r-$.',P-l]=(r-'~r, P-11 + n-%(T,.P)'/z~- -t_ (6.2) 

n'la(Tr P)-'Iz I ((a,p} = afl I p*a*) 

After multiplication by P from the right and left, (6.2) becomes 

P' = (p, r-'r' _ r-'/$r) _ a-' 2 (Tr p)‘” p _ ,L1/. (Tr [J)-I/> p’ 

We set B = r-lr’ - r-‘Ar. Then from (6.3) we have 

-$ Tr P = Tr (P, B} -a-‘/. (Tr P)'l* - n'i. (Tr P)-‘1s (Tr p*) 

(6.3) 

(6.4) 

For Tr {P, B)= 2 Tr PB we have the estimate 

2 Tr PB < 2 II PI/ II B II = 2cII P Ii 

on the strength of the Cauchy-Buniakovskii inequality. In addition, 11 P II = (Tr P")'l* = (Z&)'ll < 

Zhi = Tr P, where hi > 0 are the eigenvalues of the positive-definite matrix P. On the 

other hand, we have the inequality 

Tr P2 = Xii2 > (~/Tz)(XL,)~ = (l/n)(Tr P)’ 

Taking account of the inequalities obtained and denoting TrP by 5 = n-2, we obtain 



‘1’ > -c (t) 11 + n-‘/r (6.5) 

Having made the change 
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in (6.51, we find c(t)> fl-'/*~t(t). Hence, by integrating, we obtain an estimate for t,(t), and 

next for n(t) and 

Now from formula (4.3) we find 

$ln [V+(t)eay(-_ Tr A (~)ds!l”~ < $ln[n'/*[E(@)]-"1 5 I v (1) dT 
0 0 

Integrating the last inequality with respect to t and taking the notation introduced into 

account, we obtain inequality (6.1). Theorem 5 is proved. 

Theorems 3-5 yield two-sided estimatesonthe volumes of the outer and inner ellipsoids 

approximating the attainability domain, in terms of the parameters of the original controlled 

system. 
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