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TWO-SIDED ESTIMATES ON THE ATTAINABILITY DOMAINS OF CONTROLLED SYSTEMS®

A.I. OVSEEVICH and F.L. CHERNOUS'KO

The differential equations describing the evolution of outer and inner ellipsoidal
approximations to the attainability domains of controlled systems are studied.
Estimates of the volumes are obtained and certain extremal properties of these ellip-
soids are formulated.

Knowledge of attainability domains is required not just in control problems. It is es-
sential also when estimating the influence of perturbations on dynamic systems under a estima-
tion (filtration) of the dynamic systems in the presence of measurement errors /1—-3/, as well
as in differential games /4/. However, the effective construction of attainability domains
is very difficult. An explicit description is available only in the simplest cases, while a
numerical construction /5,6/ entails the need for approximating the domain's boundary in a
multidimensional space. In a number of cases /7/ the evolution of the attainability domain
is described by an ordinary differential equation in an infinite-dimensional space. It is
natural to try to find a reasonable finite-dimensional approximation of this complex dynamic
system. Ordinary differential equations were obtained in /8- 10/, describing the evolution
of outer and inner ellipsoidal approximations to the attainability domains.

1. Evolution of attainability domains. Consider a controlled dynamic system of
general form

T=f(z, u ), v U@, z()&D (s (1.1)

Here t is time, z & R"™ is the phase vector, U (f) are prescribed sets of values of control u,
D (s) is the domain in which the phase vector lies at the initial instant s (the initial do-
main). The set of endpoints z(f) of the trajectories starting off in D (s) and satisfying (1.1)
for some admissible control u ({)is called the attainability domain D () = D (s, t) of system
(1.1) at the instant !. 1In order to emphasize the dependence of the attainability domain on
the initial set D and on the initial instant s we write D (t) =D (¢, s, D (s§)). The attain-
ability domain is an important characteristic of a controlled system, permitting the evalua-
tion of control capability, as well as essentially simplifying the solving of optimization
problems. Thus, the problem of minimizing a terminal functional F (z(T)). where T is a fixed
instant and F(2) is a prescribed function, is equivalent to seeking the minimum of F (z) on the
attainability domain D (T).

Let us consider a controlled system (1.1) in which

flz, u, )y =A @)z +glz. u, t) (1.2)
where A (t) is an n X n-matrix, while the set
Gz, ) ={y=RY, y=g{z, u t), u = U (1)}

of values of g(z, u, t} as a function of u admits of the two-sided estimate G_ () C G{x., 1) C
G, (1), , where G4 (f) are closed convex sets. Let an analogous estimate D_(s) D (s) T D, (s)
on the initial domain exist as well. Then, obviously, the attainability domains Dg(f) of the
linear controlled systems

IF=A{)z+tu, z(s)=D_(s), u. EG6_(1)

=AWzt u, z@ D, (), u, &G (1)

yield the two-sided estimate D_(t) C D (t) © D, (t) for the required attainability domains of
system (1.1). Consequently, the problem of estimating the attainability domains for system
(1.1), (1.2) is to a significant extent reduced to the analogous problem for the linear system
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r=A{ztu 2z D@, uesl® (1.3)

where D (s) and U (f) are prescribed closed convex sets in R". This problem is precisely the
one to be studied below., We describe the evolution of the attainability domains D({) of
system (1.3) with the aid of an ordinary differential equation in an infinite-dimensional space.
For this we note that U = D (f) is a closed convex set, and such sets are uniquely specified

by their support function /1l/

H ()= Hp () =sup(z, )
x=D

where £ R® and (,) is the scalar product. The following theorem describes the evolution
of the support functions of the attainability domains of system (1.3).

Theorem 1. Let H(t, t) = Hpy () be the support function of the attainability domain
D () of system (1.3) and h(t, &) == Hyy(§) be the support function of the control domain U (t).
Then

ey =(A05 €.0E) +h1Y (1.4)

where 8/0% denotes the gradient with respect to &.
The proof of Theorem 1 is obtained by a differentiation of the support function, and is
omitted here.

Notes. 1°. An equation of type (1.4} was obtained in /7/ under somewhat different as-
sumptions.

2°. 1In general, the gradient aH/8f does not exist at all points. However, the definition
of the expression (3H/3t{E). v}, if it is understood as a directional derivative along 14 (i.e.,
limet{H{4+em) —HE) as e ] 0), is everywhere well-posed for any convex function H (¢ /11/.
The term (4 (3H/3Y), ) = (0H/8E, 4* &) in Eq. (1.4) should be understood in precisely this sense
(matrix A* is the transpose of A4).

Definition. Let Q(t) be a family of closed convex sets depending on a parameter t>2»s,
H(t, &) = Hqqy, (£) be the corresponding family of support functions. We say that Q(f) is family
of subattainability domains (respectively, superattainability domains) for system (1.3) if the
differential ineguality

2Ly < (AW S GBE) +h (68, H(s 5 = How(® (1.5)

(respectively, the inequality (1.5) with sign ») is fulfilled.

We note that the inclusion €,CQ, of closed convex sets corresponds precisely to the
inequality Hg (B) < Hy (&) for their support functions., Therefore, from Theorem 1 it follows
that () CD(H in the case of subattainability domains and Q(y = D() in the case of superattain-
ability domains. Further, if 1<t and D(r,#) is the attainability domain at instant ¢ of the
controlled system

=4 rtu, 2=, v U (1.6}

then D{v, #) contains the subattainability domain Q{1 (respectively, is contained in the super-
attainability domain Q(f). BAs a matter of fact the condition of subattainability of family

2 (1 is equivalent to the conditions Q(s)=D(s) and D(t, v, Q{x)) DR{H for any t<{t In such
a form the subattainability condition is suitable alsc for nonlinear controlled systems. The
substitution of the inclusion in the second condition to inverse leads to the superattain-
ability condition.

The problem on the approximation of the attainability domains of the form prescribed can

now be stated exactly. The volume of set Q is denoted V (Q).

Definition. Let M be some class of convex sets. We say that the family Q)& M of
subattainability (respectively, superattainability) domains locally best approximates the

family of attainability domains D (i) of system (1.3) if at any instant t the derivative of
the volume

a/dtV (Q (1) fte

reaches the maximum {minimum} among all families of subattainability {superattainability) do-
mains from M for the system (1.6).

We are required to construct effectively the locally best family of sub- and superattain-
ability domains of class M. This problem is solved in Sect.2 for the case when Mis the
class of all ellipsoids.
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2. Ellipsoidal approximation. we introduce the notation £ (a, Q) for the ellipsuiu
(Q is a positive-definite symmetric matrix)

{ze=RY, (QP(zr—a), 2—a) < 1), a=R"

We assume that at the initial instant s =0 the initial domain D (0) of controlled system
(1.3) is the ellipsoid FE (a4, Q) and that the control domain U (f) is the ellipsoid E (b (t),
G (#)). Then the evolution of the ellipscids locally best approximating the attainability do-
mains of the system

r=A)z+u z(0) E(a, Q) uSE(b(), G) (2.1

is descirbed by differential equations presented in Theorem 2 (given here without proof).

Theorem 2. For the family of ellipsoids E(az(t), @£(t)) to be the locally best family
of subattainability (superattainability) ellipsoids for system (2.1}, it is necessary and
sufficient that the vector az(f) and the matrix Q(t) be the solution of the following Cauchy
problem:

in the subattainability case

a’=A{ta_+b(t), a_(0)=a, (@2
Q= A() Q_+ Q_A(&)* + 2R (RQ_R*)' (RG (t) R¥)"s Rt
Q_(0)=(

where R is a nondegenerated matrix such that RQ_R* and RG (t) R* are diagonal matrices:
in the superattainability case
a =A{tya, +b(t), a, (0)=a, (2.3)
()+‘= A() Q++ Q+A (0)* + hQ+ + 06 (), Q+ (0) == QO
k== {n" Tr (076G 1))
Obviougly, a () =a, (). Below we denote a_(t) =a, (!)=a (1)

37. It is well known (see /12/, for example) that if 4 and B are symmetric matrices one
of which is positive definite, then a nondegenerated matrix R exists such that RAR* and RBR*
are diagonal. In spite of the possible ambiguity in the choice of Rthe expression R-!(RAR%)" x
(RBR*)'*R*™? depends only on 4 and B and equals A" (47 Ba™/n'» 4'/+ if matrix 4 is positive de-
finite, Therefore, the right-hand side of (2.2) is correctly defined.

4%, Equations (2.2) and (2.3) were obtained earlier in /8- 10/ from other considera-
tions. Theorem 2 establishes the extremal properties of the ellipsoids described by these
equations.

3. Evolution of the wvolumes of the inner and outer ellipsoids. From Theorem
2 we can obtain formulas for the derivative of the volumes of the ellipsoids locally best
approximating from above and from below the attaindbility domain of system (2.1).

Lemma (/12/, Chapter XV). Let A{f) be a family of invertible matrices depending smooth-
ly on L. Then

d/dt tn det A (1) = Tr (4 (H)4" (£) (3.1)

Corollary. Let E(a(t), Q()) be a family of ellipsoids and V () be its volume. Then

LV =4V T QO™ 1) (3.2)
Indeed, V () = o, [det Q ()I'*, where w, is the volume of the unit ball E (0, I) (I is the unit
matrix). Therefore, (3.2) follows from (3.1). The result of Sect.3 is as follows.

Corollary from Theorem 2. Let E (a(t), Qf (!)) be a locally optimal family of ellipsoids
of subattainability (index minus) or superattainability (index plus) for system (2.1) and let
Vi (1) be the volume of these ellipsoids. Then, respectively, (Q° and G° are diagonal matrices)

didt In V_ () = Tr A () + Tr [(Q_0)~: (GO (3.3
Q% = RQ_R*, G°= RG (t) R*
didt 1n V, (f) = Tr 4 (t) + [nTr (Q, (8)7G (&) (3.4)

Proof. We multiply the right-hand side of Eq.(2.2) by Q_!' and we compute

Tr Q10" = 2 [Tr A + Tr (Q"R™ () (€)+R* )] = 2 (Tr A + Tr [(Q0) (GU#1)
Hence, with due regard to formula (3.2), we obtain (3.3). Analogously, in the case of system
(2.3) we have



593

TrQ,Q,” = Tr [24 + kI + 17Q, Gl = 2 {Tr + [nTr (Q,”'G)I'2}
From this and from (3.2) we obtain (3.4).

4. Comparison of the volumes of the inner and outer ellipsoids. The next
theorem gives a comparative estimate of the volumes V, and V_of the approximating ellipscids.

Theorem 3. In the above-adopted notation we have (V, is the volume of domain D (0))

Vom <y, (4.1)
: : 3 S VR

Vi (o) ; V. () '

Vot °XP (~§Tr A \r)dr/] < I:Vo—(—t)— exp<—§Tr A (r)dr)J

Proof. The first inequality in (4.1) is trivial since the inner ellipscid is contained
in the outer. To prove the second we rewrite (3.3) and (3.4) as

-

< ln [V_ (t) exp (_ \ Tc 4 (1) dt)] =Tr(Q_° () G°(r)‘f‘=) (4.2)
t
2o [V+(t) exp(— S Tr A (1) dr)] = Tr Q.76 ()] (4.3)
(1]
and establish the inequality
Tr [(Q_%*+(G°)") > Tr (Q46) (4.4)

connecting the right-hand sides of (4.2) and (4.3). To prove relation (4.4) we note that @.°
and ¢° and, consequently, also (Q-9"/, (6% are diagonal matrices with positive diagonal ele-
ments. If a=(%; is any such matrix, then

n

(Tra)? = (2 a“)2> 3 o = Tr (&)

i=1 i=1
Therefore,
{Te [(Q™(6 1 > Tr {Q0)™/1(67) = Tr [(Q716")

since Q. and G° are diagonal. From formulas (3.3) for these matrices follows (Q.9)1G° =
R*-1Q_GR*, and, therefore, Tr(Q.9716"= Tr Q_7iG6. Thus, (Tr(Q-9 " (6)/** > TrQ_'¢ , and to prove
(4.4) it is enough to establish that

TrQ2'6 > TrQ7%e (4.5)
Since the inner ellipsoid is contained in the outer and shares a common center a then B =

Q.7' — @, is a nonnegative-definite symmetric matrix: (fz, 2) >0, Az & R*. Matrix G is positive
definite. Therefore, inequality (4.5) follows from the fact that

n
TepG=Tryy* = 3 >0, v=pre
i, 1=1

From (4.2)— (4.4) we obtain

—37 In [V+ (t)exp (— § Tr 4 (7) dr)}' < n‘/’l%ln [V_(t) exp (— S Tr A7) dr)}
0 0

whence follows the second inequality in (4.1).

The proved Theorem 3 enables us to estimate from both sides one of the volumes V, or V_
of the ellipsoids if we know the other (V_or V,). Therefore, to obtain a two-sided estimate
on the volume of the attainability domain D (f}) it is sufficient to integrate only one of the

systems (2.2) or (2.3). It is interesting to compare inequality (4.1) with the following
result ® of John.

Theorem /13/. Let R be acentro-symmetric convex body centered at the origin. Then
an ellipsoid EC Q exists such that the ellipsoid E*= VRE={r=R". z= Vny, y = E} contains

5. Lower estimate on the inner ellipsoid's volume. Using formula (4.2) we
obtain a lower estimate on the volume of the locally optimal subattainability of ellipsoid.

Theorem 4. In the above-adopted notation the inequality

t t T

V_ (/> exp (- S TrA(x)de) (V5™ + S Ve (0 exp (— %S Tr 4(0) do)dr | (5.1)
(1] 0 0 -
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is fulfilled, where Vg (1) is the volume of the ellipsoid E (b(1), G (1)) of admissible controls
(see (2.1)).

Proof. Let us estimate from below the right-hand side of formula (4.2); to be precise,
let us show that

Tr(Q_9' (G > V"V " (5.2)
Indeed, if a is a nonnegative-definite symmetric matrix and 1, ..., A, are its eigenvalues,

then
(/n) Tra=(1/n) D A; > (A . . . A)L™ == (det q)1/n

From this inequality for a = (Q_%-:(G%)": and from the definition of Q20 and (® in (3.3) fol-
lows

Tr Q™ (6% > n{det [(Q_ 6N = n [det (='G) Y™

Hence follows (5.2). Substituting (5.2) into (4.2) and integrating from 0 to ¢, we obtain
the assertion of Theorem 4.

Corollary. when A =0 we have the inequality

t
V (tyn > Ve (rpinde

o

for the volume V (f) of the attainability domain D (t) .
To prove this it is enough to apply inequality (5.1) and to note that V(> V_{g§. This
corollary can be obtained independently from the Brunn—Minkowski inequality
Q0+ QY 20 (@ V()Y

where Q,+Q, ={z=R", z=1+1, 7 =2i}1is the Minkowski sum of convex sets @, and R, /14/.

6. Upper estimate on the outer ellipsoid's volume, wWe now obtain an  upper
estimate for the superattainability ellipsoid's volume. In contrast to the estimate in Theorem
4, in the estimate in Theorem 5 we now have, besides the matrices A (f) and G (t), also the
derivative of the latter.

Theorem 5. ©Let r(t) =G (1)":. Then in the adopted notation the inequality
P Qe @\ b f
YRR COTRPR IS PR IR P PR TS
0 1] 0
c@) =lr@®O™ () —r@T4 @O rnl
is fulfilled, where |[all = [Tr (aa*)}: is the Hilbert—Schmidt norm of matrix a.

Proof. We esimate the right-hand side of formula (4.3). We set P =rQ.'r. Then TrP =
Tr @, %% = TrQ,7'¢ and it all reduces to estimating TrP. Substituting Q, =rP'r into differ-

ential Eq.(2.3), for P we obtain the equation
— PP P Y, Py = (7 A, P o e (Te PY P (6.2
e (Te Py 1 ({a, B} = af L f*a*)
After multiplication by P from the right and left, (6.2) becomes
P = (P, r'r —rtAr) — a2 (T PY P — 1 (T Py P2 (6.3)

We set B =rr' —r'Ar. Then from (6.3) we have
'gz_ Tr P = Tr (P, B} — n~"/*(Tr PY/1 — n'/+ (Tr P)~"/+ (Tr P?) (6.4)

For Tr {P, B} = 2 Tr PB we have the estimate
2TrPB L2 P BIl = 2 Pl

on the strength of the Cauchy— Buniakovskii inequality. In addition, || P{| = (Tr P2 = (ZA;)" <
3A; = Tr P, where A; >0 are the eigenvalues of the positive-definite matrix P. On the
other hand, we have the inequality

Tr P? = ZA32 > (1/n)(2X)* = (1/n)(Tr P)?

Taking account of the inequalities obtained and denoting TrP by §=177% we obtain
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o
v

W > —e ()0 + A (
Having made the change '
S
nO=LHu®™ plt)=exp)cir)dr
L]

n-

. 1oocy e £ind N
in (0.0}, we ILina o (¢

next for v (f) and

\%

t
. F B S S
(Tr (QV6)e = (Tr Py e In B (O + Y p(m) df
)
Now from formula (4.3) we find

t !
%— In llﬂ () exp (— S Tr A7) dt):‘fun < % In {n'/x [110) = S p(t) d'r}
0 0

Integrating the last inequality with respect to t and taking the notation introduced into
account,; we obtain inequality (6.1). Theorem 5 is proved.

Theorems 3—5 yield two-sided estimates on the volumes of the outer and inner ellipsoids
approximating the attainability domain, in terms of the parameters of the original controlled
system.
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